Normal view MARC view ISBD view

Complex networks : principles, methods and applications /

by Latora, Vito (Vito Claudio) [aut]; Nicosia, Vincenzo [aut]; Russo, Giovanni [aut].
Material type: materialTypeLabelBookPublisher: Cambridge, UK ; New York, NY : Cambridge University Press, 2017Description: xxi, 559 p. : ill. ; 26 cm.ISBN: 9781107103184 (hardback).Subject(s): Network analysis (Planning)
Contents:
Preface; Introduction; 1. Graphs and graph theory; 2. Centrality measures; 3. Random graphs; 4. Small-world networks; 5. Generalised random graphs; 6. Models of growing graphs; 7. Degree correlations; 8. Cycles and motifs; 9. Community structure; 10. Weighted networks; Appendix; References; Author index; Index.
Summary: Networks constitute the backbone of complex systems, from the human brain to computer communications, transport infrastructures to online social systems and metabolic reactions to financial markets. Characterising their structure improves our understanding of the physical, biological, economic and social phenomena that shape our world. Rigorous and thorough, this textbook presents a detailed overview of the new theory and methods of network science. Covering algorithms for graph exploration, node ranking and network generation, among others, the book allows students to experiment with network models and real-world data sets, providing them with a deep understanding of the basics of network theory and its practical applications. Systems of growing complexity are examined in detail, challenging students to increase their level of skill. An engaging presentation of the important principles of network science makes this the perfect reference for researchers and undergraduate and graduate students in physics, mathematics, engineering, biology, neuroscience and the social sciences.
Tags from this library:
No tags from this library for this title.
Location Call number Status Date due
003.72 L358 (Browse shelf) Available

Includes bibliographical references and index.

Preface; Introduction; 1. Graphs and graph theory; 2. Centrality measures; 3. Random graphs; 4. Small-world networks; 5. Generalised random graphs; 6. Models of growing graphs; 7. Degree correlations; 8. Cycles and motifs; 9. Community structure; 10. Weighted networks; Appendix; References; Author index; Index.

Networks constitute the backbone of complex systems, from the human brain to computer communications, transport infrastructures to online social systems and metabolic reactions to financial markets. Characterising their structure improves our understanding of the physical, biological, economic and social phenomena that shape our world. Rigorous and thorough, this textbook presents a detailed overview of the new theory and methods of network science. Covering algorithms for graph exploration, node ranking and network generation, among others, the book allows students to experiment with network models and real-world data sets, providing them with a deep understanding of the basics of network theory and its practical applications. Systems of growing complexity are examined in detail, challenging students to increase their level of skill. An engaging presentation of the important principles of network science makes this the perfect reference for researchers and undergraduate and graduate students in physics, mathematics, engineering, biology, neuroscience and the social sciences.