Biblioteca Allievi della Scuola Superiore di Catania

Location | Call number | Status | Date due |
---|---|---|---|

511.352 A7699 (Browse shelf) | On order (soon on shelf) |

Includes bibliographical references (p. 549-573) and indexes.

Describes recent achievements and classical results of computational complexity theory, including interactive proofs, PCP, derandomization, and quantum computation. It can be used as a reference, for self-study, or as a beginning graduate textbook. More than 300 exercises are included. This beginning graduate textbook describes both recent achievements and classical results of computational complexity theory. Requiring essentially no background apart from mathematical maturity, the book can be used as a reference for self-study for anyone interested in complexity, including physicists, mathematicians, and other scientists, as well as a textbook for a variety of courses and seminars. More than 300 exercises are included with a selected hint set. The book starts with a broad introduction to the field and progresses to advanced results. Contents include: definition of Turing machines and basic time and space complexity classes, probabilistic algorithms, interactive proofs, cryptography, quantum computation, lower bounds for concrete computational models (decision trees, communication complexity, constant depth, algebraic and monotone circuits, proof complexity), average-case complexity and hardness amplification, derandomization and pseudorandom constructions, and the PCP theorem.

Sanjeev Arora is a Professor in the department of computer science at Princeton University. He holds a Ph.D. from the University of California, Berkeley and has done foundational work in complexity theory, probabilistically checkable proofs, and approximation algorithms.

Boaz Barak is an assistant professor in the department of computer science at Princeton University. He holds a Ph.D. from the Weizmann Institute of Science.