Normal view MARC view ISBD view

Considerations on the Karush-Kuhn-Tucker multiplier in finite strain, rate-independent elastoplasticity /

by Stracuzzi, Alberto (Xtrakooz) [aut]; Grillo, Alfio S [ths]; Prohl, S [ths]; Preziosi, Luigi [opn].
Material type: materialTypeLabelBookPublisher: Catania : Scuola Superiore di Catania, 2014Description: 54 p. : ill. ; 25 cm.Subject(s): Ciccioni | Elastoplasticity -- Mathematical models
Contents:
1 Introduction -- 2 Foundations of Continuum Mechanics -- 2.1 Notation -- 2.2 Kinematics -- 2.3 Objective time derivatives -- 2.4 Principle of Virtual Power for First Gradient materials -- 2.5 Isotropy -- 2.5.1 Symmetry of Mandel tensor -- 3 Dissipation -- 3.1 Principle of Maximum Dissipation -- 3.2 Rate independent plasticity and yield criterion -- 3.3 Principle of Maximum Plastic Dissipation -- 4 Analytic determination of the KKT-multiplier -- 4.1 KKT multiplier -- 4.2 Tensors A and Bp for isotropic hyperelastic materials -- 4.3 Materials independent on I2 -- 5 Conclusions -- A Tensorial products -- Bibliography.
Dissertation note: Tesi di diploma di 1° livello per la Classe delle Scienze Sperimentali Diploma di 1° livello Scuola Superiore di Catania, Catania, Italy 2014 A.A. 2012/2013 Abstract: The aim of this thesis is to formulate an analytical expression of the lagrangian multiplier associated with the problem of maximizing ther dissipation of a continuum system: under appropriate hypotheses, the validity of the dissipation inequality defines the limits of the possible constitutive relations for a material. In the case of elastoplasticity, this leads to a constrained optimization problem, in which a lagrangian multiplier and the Karush-Kuhn-Ticker conditions are introduced.
List(s) this item appears in: Tesi di Laurea, Diploma, Dottorato, Master
Tags from this library:
No tags from this library for this title.
Location Call number Copy number Status Date due
Sala B : Armadio Tesi THS_2014 531.01 S8949 (Browse shelf) 1 Available
Sala B : Armadio Tesi THS_2014 531.01 S8949 (Browse shelf) 2 Available
Sala B : Armadio Tesi THS_2014 531.01 S8949 (Browse shelf) 3 Available
Sala B : Armadio Tesi THS_2014 531.01 S8949 (Browse shelf) 4 Available

Tesi di diploma di 1° livello per la Classe delle Scienze Sperimentali Diploma di 1° livello Scuola Superiore di Catania, Catania, Italy 2014 A.A. 2012/2013

Includes bibliographical references (p. 50-54).

1 Introduction -- 2 Foundations of Continuum Mechanics -- 2.1 Notation -- 2.2 Kinematics -- 2.3 Objective time derivatives -- 2.4 Principle of Virtual Power for First Gradient materials -- 2.5 Isotropy -- 2.5.1 Symmetry of Mandel tensor -- 3 Dissipation -- 3.1 Principle of Maximum Dissipation -- 3.2 Rate independent plasticity and yield criterion -- 3.3 Principle of Maximum Plastic Dissipation -- 4 Analytic determination of the KKT-multiplier -- 4.1 KKT multiplier -- 4.2 Tensors A and Bp for isotropic hyperelastic materials -- 4.3 Materials independent on I2 -- 5 Conclusions -- A Tensorial products -- Bibliography.

Tesi discussa il 21/5/2014.

The aim of this thesis is to formulate an analytical expression of the lagrangian multiplier associated with the problem of maximizing ther dissipation of a continuum system: under appropriate hypotheses, the validity of the dissipation inequality defines the limits of the possible constitutive relations for a material. In the case of elastoplasticity, this leads to a constrained optimization problem, in which a lagrangian multiplier and the Karush-Kuhn-Ticker conditions are introduced.

Click on an image to view it in the image viewer