Location | Call number | Copy number | Status | Date due |
---|---|---|---|---|
Sala B : Armadio Tesi | THS_2014 531.01 S8949 (Browse shelf) | 1 | Available | |
Sala B : Armadio Tesi | THS_2014 531.01 S8949 (Browse shelf) | 2 | Available | |
Sala B : Armadio Tesi | THS_2014 531.01 S8949 (Browse shelf) | 3 | Available | |
Sala B : Armadio Tesi | THS_2014 531.01 S8949 (Browse shelf) | 4 | Available |
Tesi di diploma di 1° livello per la Classe delle Scienze Sperimentali Diploma di 1° livello Scuola Superiore di Catania, Catania, Italy 2014 A.A. 2012/2013
Includes bibliographical references (p. 50-54).
1 Introduction -- 2 Foundations of Continuum Mechanics -- 2.1 Notation -- 2.2 Kinematics -- 2.3 Objective time derivatives -- 2.4 Principle of Virtual Power for First Gradient materials -- 2.5 Isotropy -- 2.5.1 Symmetry of Mandel tensor -- 3 Dissipation -- 3.1 Principle of Maximum Dissipation -- 3.2 Rate independent plasticity and yield criterion -- 3.3 Principle of Maximum Plastic Dissipation -- 4 Analytic determination of the KKT-multiplier -- 4.1 KKT multiplier -- 4.2 Tensors A and Bp for isotropic hyperelastic materials -- 4.3 Materials independent on I2 -- 5 Conclusions -- A Tensorial products -- Bibliography.
Tesi discussa il 21/5/2014.
The aim of this thesis is to formulate an analytical expression of the lagrangian multiplier associated with the problem of maximizing ther dissipation of a continuum system: under appropriate hypotheses, the validity of the dissipation inequality defines the limits of the possible constitutive relations for a material. In the case of elastoplasticity, this leads to a constrained optimization problem, in which a lagrangian multiplier and the Karush-Kuhn-Ticker conditions are introduced.